/avatar.jpg

DATA100-L12: Gradient Descent, sklearn

开始调包!😏 1 2 3 4 from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(df[["total_bill"]], df["tip"]) df["predicted_tip"] = model.predict(df[["total_bill"]]) 所有的机器学习似乎都在最小化loss function,而梯度下降就是一种优化算法,它通过迭代的方式不断更新模型参数,使得loss function的值不断减小。 详情见NNDL栏目

DATA100-L11: Ordinary Least Squares

linear in theta linear combination of parameters $\theta$ define multiple linear regression OLS problem formulation ordinary least squares (OLS) 用线性代数重写之 $$ \mathbb{\hat{Y}} = \mathbb{X}\theta $$ multiple linear regression model MSE $$ R(\theta) = \frac{1}{n}||\mathbb{Y}-\hat{\mathbb{Y}}||_2^2 $$ geometric derivation lin alg review: orthogonality, span $$ span(\mathbb{A})是一个由列向量组成的space $$ 正交 least squares estimate proof performance: residuals, multiple R-squared lec11.ipynb $$ R^2∈[0,1] $$ 越大拟合效果越好 OLS properties residuals the bias/intercept term existence of a unique solution

DATA100-L10: Constant Model, Loss, and Transformations

constant model + MSE 微积分是求最优化的一种方法 两种记法 constant model + MAE 绝对值求导新视角 $$ \sum_{\theta <y_i} 1=\sum_{\theta >y_i} 1 $$ 是计数!==>中位数 loss的敏感性问题 revisiting SLR evaluation 画图before modeling!!! transformations to fit linear model 经验之谈 introducing notation for multiple linear regression