随机变量及其分布 参考 概率论与数理统计 课程即可
期望与方差 $$ \mathbb{E}[X] 和 Var(X) $$ 参考 概率论与数理统计 课程即可
随机变量的和 equality vs Identically distributed vs IID 有意思的分析 😏
期望和方差的性质 协方差与相关系数 伯努利(0-1)和Binomial分布 Sample Statistics sample mean central limit theorem
$\downarrow{shuffle}$ SGD: Stochastic Gradient Descent(but size == 1)
convexity (凹凸性) feature engineering 在于怎么使用transforming
feature function see website code
non-numeric features one-hot encoding concat high order polynomials detect overfitting collect more data more see next lecture
Accuracy is a necessary, but not sufficient, condition for fair system. Fairness and transparency are context-dependent. Learn to work with contexts, and consider how your data analysis will reshape them. Keep in mind the power, and limits, of data analysis.