/avatar.jpg

CS186-L1: Introduction + SQL I

大纲进程: sheet SQL I pros and cons relational Terminology and concepts database: set of name relations relation(table): schema: descriptions “metadata” fixed, unique attribute names, atomic types instance: set of data 符合description often changed, can duplicate multiset of tuples or “rows” attribute (column,field) tuple (row,record),怀疑一些python概念也来自于此 DDL (Data Definition Language) 1 2 3 4 5 6 7 8 9 10 CREATE TABLE myTable ( ID INTEGER, myName CHAR(50), Age INTEGER, Salary FLOAT, PRIMARY KEY (ID, myName), FOREIGN KEY (ID) REFERENCES myOtherTable(ID), FOREIGN KEY (myName) REFERENCES myOtherTable(myName) ); 1 2 3 SELECT [DISTINCT] <column expression list> FROM <single_table> [WHERE <predicate>] ORDER BY Lexicographic order by default 字典序 LIMIT Aggregation functions AVG: average COUNT: count the number of rows MAX: maximum value MIN: minimum value SUM: sum of values 1 2 SELECT AVG(Salary) FROM myTable; GROUP BY HAVING

DATA100-L26: Parallel Data Analytics; Conclusion

mapreduce MapReduce是一种编程模型,用于大规模数据集的并行运算[1][2][3]。它将复杂的并行计算过程抽象为两个函数:Map和Reduce[4]。 Map函数将输入数据集拆分成独立的块,并对每个块应用映射操作,生成一组中间键值对[1][2][3]。Reduce函数会对所有Map的输出进行合并操作,生成最终结果[1][2][3]。 MapReduce的主要特点包括[4][5]: 易于编程:程序员只需描述做什么,具体怎么做由系统的执行框架处理 良好的扩展性:可通过添加节点扩展集群能力 高容错性:通过计算迁移或数据迁移等策略提高集群的可用性与容错性 MapReduce采用"分而治之"策略,将大规模数据集切分成多个独立的分片,这些分片可以被多个Map任务并行处理[4]。它设计的一个理念是"计算向数据靠拢",移动数据需要大量的网络传输开销[4]。 总之,MapReduce是一种简单、可扩展的并行计算模型,通过抽象Map和Reduce函数,使得程序员可以轻松编写大规模并行应用程序,而无需关注底层的分布式细节[1][2][3][4][5]。 Citations: [1] https://baike.baidu.com/item/MapReduce/133425 [2] https://zh.wikipedia.org/zh-hans/MapReduce [3] https://www.ibm.com/cn-zh/topics/mapreduce [4] https://cshihong.github.io/2018/05/11/MapReduce%E6%8A%80%E6%9C%AF%E5%8E%9F%E7%90%86/ [5] https://cloud.tencent.com/developer/article/1778549 apache spark lazy strategy: 延迟计算策略,Spark默认采用这种策略,即只有当数据真正被使用时才会计算。 编译优化语句执行顺序! Conclusion 工具链 What is next? 有用的data science链接 http://kaggle.com https://github.com/awesomedata/awesome-public-datasets http://toolbox.google.com/datasetsearch https://towardsdatascience.com https://www.reddit.com/r/dataisbeautiful/ https://fivethirtyeight.com

DATA100-L24: Clustering

introduction to clustering no label at all 😢 K-means clustering 算法动画演示 K-Means vs KNN minimizing inertia convex?? 损失函数不一定凸,梯度下降难顶 how to see which one is better ❓ 但是找到全局最优解非常困难 agglomerative clustering 演示见上面链接以及lec code! 和CS61B的minimum spanning tree类似,每次合并两个最近的点,直到终止条件 outlier 有时忽略处理或者自成一类 picking K Smax? can s be negative? summary