Contents

DATA100-L8: Visualizations Ⅱ

Kernel Density Functions

KDE Mechanics

smoothing in 1D(histograms)

rug —> histogram

smoothing in 2D(heatmaps/Hex Plot)

KDEs

/datal8/image.png 代码实现: sns.distplot(data, kde=True)

Kernel Functions and Bandwidth

/datal8/image-1.png $\alpha$ 越大,曲线越平滑

当然也有其他的kernel函数,比如:

  • triangular kernel
  • epanechnikov kernel
  • boxcar kernel

Visualization Theory

注意可视化的目的!

仅仅靠统计方法不够直观并且不够准确!

Information Channels

color, shape, size, position (coordinate), and orientation

Harnessing X/Y

do not use different scales for x and y in the same visualization!

比例适中

Harnessing Color

选颜色,jet, viridis主题等等

最好选择perceptually uniform的颜色!而jet不是!Inferno, Turbo可以 /datal8/image-2.png /datal8/image-3.png

Harnessing Markings

人更倾向于比较整齐的直方图(一维长度)

避免移动调整基线!

取决于讲什么故事

Harnessing Conditioning

/datal8/image-4.png

Harnessing Context

/datal8/image-5.png /datal8/image-6.png

Transformations

linearize线性化处理

log transform对数变换

更多的代码参考jupyter notebook