Contents

DATA100-L20: PCA II

recap and Goals

/datal20/image.png

approximate factorization

/datal20/image-1.png $W\ L\rightarrow (W+L)/ 2$ rank 下降使得信息缺失了

所以 $M_{100 \times 4} = N_{100 \times P} \times Q_{P \times 4}$ P的值尽量不要小于原来的"秩"

singular value decomposition (SVD)

/datal20/image-2.png

low rank approximation

no bad! seem good!

SVD theory

/datal20/image-3.png /datal20/image-4.png 验证orthonormal set

当相乘的时候本质上是旋转,不会拉伸

Principal Components

零中心化再来看PCA /datal20/image-5.png /datal20/image-6.png

Principal Components and Variance

/datal20/image-7.png /datal20/image-8.png /datal20/image-10.png

PCA example

Why is useful? 🤔 /datal20/image-9.png