DATA100-L20: PCA II
Contents
recap and Goals
approximate factorization
$W\ L\rightarrow (W+L)/ 2$
rank 下降使得信息缺失了
所以 $M_{100 \times 4} = N_{100 \times P} \times Q_{P \times 4}$ P的值尽量不要小于原来的"秩"
singular value decomposition (SVD)
low rank approximation
no bad! seem good!
SVD theory
验证orthonormal set
- V@V.T = I
当相乘的时候本质上是旋转,不会拉伸
Principal Components
零中心化再来看PCA
Principal Components and Variance
PCA example
Why is useful? 🤔