Contents

DATA100-L11: Ordinary Least Squares

linear in theta

linear combination of parameters $\theta$ /datal11/image.png

define multiple linear regression

/datal11/image-1.png

OLS problem formulation

ordinary least squares (OLS)

用线性代数重写之 $$ \mathbb{\hat{Y}} = \mathbb{X}\theta $$

multiple linear regression model

/datal11/image-2.png

MSE

/datal11/image-3.png $$ R(\theta) = \frac{1}{n}||\mathbb{Y}-\hat{\mathbb{Y}}||_2^2 $$

geometric derivation

lin alg review: orthogonality, span

$$ span(\mathbb{A})是一个由列向量组成的space $$ /datal11/image-4.png 正交 /datal11/image-5.png

least squares estimate proof

/datal11/image-6.png

performance: residuals, multiple R-squared

lec11.ipynb

/datal11/image-7.png $$ R^2∈[0,1] $$ 越大拟合效果越好

OLS properties

residuals

/datal11/image-8.png

the bias/intercept term

/datal11/image-10.png

existence of a unique solution

/datal11/image-9.png